HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023
DIGITAL LOGIC DESIGN
(Common to CSE, CSE(IOTCSBT) Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1	a)	Convert (2469 $)_{10}$ in to BCD.	$[2 \mathrm{M}]$	1	
	b)	State De-Morgan's Theorems.	$[2 \mathrm{M}]$	2	
	c)	What are advantages of tabulation method over k-map. Draw the K map for 5 variables.	$[2 \mathrm{M}]$	3	
	d)	Implement the function F= $\sum \mathrm{m}(1,2,3,7)$ using 3:8 decoder.	$[2 \mathrm{M}]$	4	
	e)	Distinguish between latch and flip-flop.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Interpret the following to Decimal and then to Binary i) $(\mathrm{ABCD})_{16}$ ii) $(7234)_{8}$	[5M]	1	
	b)	Deduce i) $(231)_{10}-(37)_{10}$ using BCD numbers with 10 's complement method ii) (13) $)_{10}$ - (159) ${ }_{10}$ using Excess-3 codes with 9's complement method	[5M]	1	
OR					
3.	a)	A receiver with even parity hamming code receives the data 1110110 . Determine the correct code.	[5M]	1	
	b)	What is the gray code? What are the rules to construct gray code? Develop the 4-bit gray code for the decimal 0 to 15 .	[5M]	1	
UNIT-II					
4.	a)	Implement AND,NOT,OR,NOR logic gates using NAND gate	[5M]	2	
	b)	Obtain the Dual of the following Boolean expressions a) $A B+A(B+C)+B^{\prime}(B+D)$ b) $A+B+A^{\prime} B^{\prime} C$	[5M]	2	
OR					
5.	a)	Obtain the Dual of the following Boolean expressions a) $A^{\prime} B+A^{\prime} B C^{\prime}+A^{\prime} B C^{\prime} D^{\prime} E$ b) $\mathrm{ABEF}+\mathrm{ABE}{ }^{\prime} \mathrm{F}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} E F$	[5M]	2	
	b)	Express the function $\mathrm{AB}^{\prime} \mathrm{D}+\mathrm{AC} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{A} \mathrm{BD}$ in sum of minterms and product of maxterms.	[5M]	2	
UNIT-III					
6.	a)	Simplify the given Boolean function using K-map $\mathrm{F}=\sum \mathrm{m}(0,2,3,4,6,7,8,11,12,13)$	[5M]	3	
	b)	Simplify the expression $\mathrm{F}=\sum \mathrm{m}(4,5,9,13,15)+\mathrm{d}(0,1,7,11,12)$ using K-map and realize using logic gates.	[5M]	3	
OR					

7.	a)	What do you mean by K-map? Name its advantages and disadvantages.	[5M]	3	
	b)	Obtain minimal POS expression for the given function and implement it in NOR logic. $\mathrm{f}=\pi \mathrm{M}(2,4,5,6,8,10,12,13,14,15)$	[5M]	3	
UNIT-IV					
8.	a)	Design the full subtractor and give its applications.	[5M]	4	
	b)	Design 16x1 Multiplexer using two 4x1 Multiplexers	[5M]	4	
OR					
9.	a)	What is decoder? Construct 3×8 decoder using logic gates and truth table.	[5M]	4	
	b)	Write about combinational logic circuit for BCD adder.	[5M]	4	
UNIT-V					
10.	a)	Compare synchronous \& Asynchronous circuits.	[5M]	5	
	b)	Build the circuit of JK flip-flop using NAND gates and explain its operation with the help of its characteristic table.	[5M]	5	
OR					
11.	a)	Draw the circuit of D flip-flop using NOR gates and explain its operation with the help of its characteristic table.	[5M]	5	
	b)	Design a Mod-6 synchronous counter using J-K flip flops.	[5M]	5	

