Code	No:	P18	BEC	Т18				
HA]	LL T	ICK	ET N	NUM	BEF	}		

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 DIGITAL LOGIC DESIGN

(Common to CSE, CSE(IOTCSBT) Branches)

Time: 3 hours Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

Answer all the questions in Part-A (5X2=10M)

Q.	No.	Questions	Marks	CO	KL
1	a)	Convert (2469) ₁₀ in to BCD.	[2M]	1	
	b)	State De-Morgan's Theorems.	[2M]	2	
	c)	What are advantages of tabulation method over k-map. Draw the K map for 5 variables.	[2M]	3	
	d)	Implement the function $F=\sum m (1, 2, 3, 7)$ using 3:8 decoder.	[2M]	4	
	e)	Distinguish between latch and flip-flop.	[2M]	5	

PART-B Answer One Question from each UNIT (5X10=50M)

		Questions Question from each UNIT (5X10–50M)	Marks	СО	KL
		UNIT-I			
2.	a)	Interpret the following to Decimal and then to Binary i) (ABCD) ₁₆ ii) (7234) ₈		1	
	b)	Deduce i) (231) ₁₀ – (37) ₁₀ using BCD numbers with 10's complement method ii) (13) ₁₀ – (159) ₁₀ using Excess-3 codes with 9's complement method	[5M]	1	
		OR			
3.	a)	A receiver with even parity hamming code receives the data 1110110. Determine the correct code.	[5M]	1	
	b)	What is the gray code? What are the rules to construct gray code? Develop the 4-bit gray code for the decimal 0 to 15.	[5M]	1	
	1	UNIT-II		1	1
4.	a)	Implement AND,NOT,OR,NOR logic gates using NAND gate	[5M]	2	
	b)	Obtain the Dual of the following Boolean expressions a) AB + A(B+C) + B'(B+D) b) A+B+A' B'C	[5M]	2	
		OR	<u>.</u>		
5.	a)	Obtain the Dual of the following Boolean expressions a) A'B + A'BC'+A'BC'D'E b) ABEF+ABE'F'+A'B'EF	[5M]	2	
	b)	Express the function AB'D+AC'D +A BD in sum of minterms and product of maxterms.	[5M]	2	
	-	UNIT-III			
6.	a)	Simplify the given Boolean function using K-map $F=\sum m(0,2,3,4,6,7,8,11,12,13)$	[5M]	3	
	b)	Simplify the expression $F=\sum m(4,5,9,13,15)+d(0,1,7,11,12)$ using K-map and realize using logic gates.	[5M]	3	
	•	OR			•

R18

Code No: P18ECT18

7.	a)	What do you mean by K-map? Name its advantages and disadvantages.	[5M]	3					
	b)	Obtain minimal POS expression for the given function and implement it in	[5M]	3					
		NOR logic. $f=\pi M(2,4,5,6,8,10,12,13,14,15)$							
	UNIT-IV								
8.	a)	Design the full subtractor and give its applications.	[5M]	4					
	b)	Design 16x1 Multiplexer using two 4x1 Multiplexers	[5M]	4					
		OR							
9.	a)	What is decoder? Construct 3 X 8 decoder using logic gates and truth table.	[5M]	4					
	b)	Write about combinational logic circuit for BCD adder.	[5M]	4					
UNIT-V									
10.	a)	Compare synchronous & Asynchronous circuits.	[5M]	5					
	b)	Build the circuit of JK flip-flop using NAND gates and explain its operation with the help of its characteristic table.	[5M]	5					
	OR								
11.	a)	Draw the circuit of D flip-flop using NOR gates and explain its operation with the help of its characteristic table.	[5M]	5					
	b)	Design a Mod-6 synchronous counter using J-K flip flops.	[5M]	5					
